CRISPR/Cas-mediated knock-in via non-homologous end-joining in the crustacean Daphnia magna

نویسندگان

  • Hitoshi Kumagai
  • Takashi Nakanishi
  • Tomoaki Matsuura
  • Yasuhiko Kato
  • Hajime Watanabe
چکیده

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) is widely used for mediating the knock-in of foreign DNA into the genomes of various organisms. Here, we report a process of CRISPR/Cas-mediated knock-in via non-homologous end joining by the direct injection of Cas9/gRNA ribonucleoproteins (RNPs) in the crustacean Daphnia magna, which is a model organism for studies on toxicology, ecology, and evolution. First, we confirmed the cleavage activity of Cas9 RNPs comprising purified Cas9 proteins and gRNAs in D. magna. We used a gRNA that targets exon 10 of the eyeless gene. Cas9 proteins were incubated with the gRNAs and the resulting Cas9 RNPs were injected into D. magna eggs, which led to a typical phenotype of the eyeless mutant, i.e., eye deformity. The somatic and heritable mutagenesis efficiencies were up to 96% and 40%, respectively. Second, we tested the CRISPR/Cas-mediated knock-in of a plasmid by the injection of Cas9 RNPs. The donor DNA plasmid harboring the fluorescent reporter gene was designed to contain the gRNA recognition site. The co-injection of Cas9 RNPs together with the donor DNAs resulted in generation of one founder animal that produced fluorescent progenies. This transgenic Daphnia had donor DNA at the targeted genomic site, which suggested the concurrent cleavage of the injected plasmid DNA and genomic DNA. Owing to its simplicity and ease of experimental design, we suggest that the CRISPR/Cas-mediated knock-in method represents a promising tool for studying functional genomics in D. magna.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TALEN-mediated knock-in via non-homologous end joining in the crustacean Daphnia magna

Transcription activator-like effector nucleases (TALENs) are versatile tools that enable the insertion of DNA into different organisms. Here, we confirmed TALEN-mediated knock-in via non-homologous end joining in the crustacean Daphnia magna, a model organism for ecological and toxicological genomics. We tested two different TALENs, ey1 TALEN and ey2 TALEN, both of which target the eyeless locu...

متن کامل

ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes

The CRISPR-Cas system is a powerful tool for generating genetically modified animals; however, targeted knock-in (KI) via homologous recombination remains difficult in zygotes. Here we show efficient gene KI in rats by combining CRISPR-Cas with single-stranded oligodeoxynucleotides (ssODNs). First, a 1-kb ssODN co-injected with guide RNA (gRNA) and Cas9 messenger RNA produce GFP-KI at the rat T...

متن کامل

Dev125054 2832..2839

Gene-editing techniques are revolutionizing the way we conduct genetics in many organisms. The CRISPR/Cas nuclease has emerged as a highly versatile, efficient and affordable tool for targeting chosen sites in the genome. Beyond its applications in established model organisms, CRISPR technology provides a platform for genetic intervention in a wide range of species, limited only by our ability ...

متن کامل

CRISPR/Cas-Mediated Targeted Mutagenesis in Daphnia magna

The water flea Daphnia magna has been used as an animal model in ecology, evolution, and environmental sciences. Thanks to the recent progress in Daphnia genomics, genetic information such as the draft genome sequence and expressed sequence tags (ESTs) is now available. To investigate the relationship between phenotypes and the available genetic information about Daphnia, some gene manipulation...

متن کامل

The new genomic editing system (CRISPR)

Over the past decades, progression in genetic element manipulation, and consequently, the treatment of diseases has been remarkable. It is worth noting that these genetic manipulations perform at different levels, including DNA and RNA. The earlier genomic editing techniques, including MN, ZFN , TALEN , performing their functions by creating double-stranded breaks (DSBs), and after breakage, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017